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Abstract cific features. Examples of features are hierarchical

The two-dimensional continuous wavelet transform structures or particular discontinuities (e.g., edges,
(CWT) is characterized by a rotation parameter, in filaments, contours, and boundaries between areas of

addition to the usual translations and dilations. The different luminosity). Of course, the type of wavelet

CWT has been interpreted as space-frequency repre- chosen depends on the precise application. In par-

sentation of two-dimensional signals, where the trans- ticular, the detection of directions requires the use

lation corresponds to the position variable, and the of an oriented wavelet (Morlet), whereas an isotropic

inverse of the scale and the rotation, taken together, wavelet (Mexican Hat) suffices for pointwise analysis.

correspond to the spatial-frequency variable. The in- The 2D CWT is a representation of an image in
tegral of the CWT's squared modulus, with respect a feature space with four parameters: scale, orien-
to all variables, gives the energy of the original sig- tation, and position. From the energy-conservation
nal. Therefore, an integration on a subset of the pa- theorem [5, 6], one defines various energy densities
rameters gives an energy density in the remaining on any subset of the four variables.
variables. This paper deals with the implementation We are currently investigating these energy den-
of the two basic densities, that is, the position (or sities in order to built a CWT 2D feature detector
aspect-angle) and scale-angle densities. for a given target type in various conditions. Those

features will then be used as input for a convolution
Introduction neural network (CNN) algorithm [7]. These densi-

The 2D continuous wavelet transform (CWT) has ties will also be used to design an ATR algorithm for

been used by a number of authors, in a wide vani- detection, classification, and recognition of targets in

ety of physical problems [1]. It has also been ap- FUR and SAR imagery.

plied in designing CWT-based algorithms for detec- In the next section, we recall the definition of the
tion and recognition of targets in a cluttered envi- CWT, and give its energy conservation property. We
ronment [2, 3, 4]. In all cases, its main use is in then discuss the implementation of the two basic en-
the analysis of images, that is, the detection of spe- ergy densities, and the complexity of the related al-
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gorithm. Implementation of the Two Basic Densities

The first problem one faces when implementing the
The 2D Continuous Wavelet Transform CWT is that of visualization. Indeed, S(a, 0, b) is

The 2D CWT is obtained by projecting an image s a function of four variables: two position variables
onto a family of dilated, rotated, and translated ver- b C lV2, and the pair (a, 0) C I2 x [0, 27r) - IC.
sions of one function 4, called the analyzing wavelet, One may say that the CWT has unfolded the signal

1 1 from two to four dimensions; this feature explains
S(a, 9, b) = _ a,OXIS) (1) its efficiency in decoupling singularities, but at the

Vc¢ same time increases the memory requirements. As a

1 _-b consequence, some of the variables must be fixed for
1 J Pd*(r-( ))s(Y) (2) visualization of the CWT. There are many possibili-ties, but the interpretation of the parameter space as

a d� [ •' bk * (ar-o (k)) 9(k) , (3) phase space given above suggests two natural ways of

x/• J presenting the CWT, using two-dimensional sections

where: of the parameter space:

e The parameters a, 0, and b correspond to scale, (i) the position representation, where a and 0 are
rotation, and translation, respectively. The hat fixed and the CWT is considered as a function
stands for the Fourier Transform, the * stands for of position b alone. The corresponding energy
the complex conjugation, and r° is the standard density is
2 x 2 rotation matrix.

* ¢ verifies the so-called admissibility condition, E 3 4 (b., by) jj da dO IS(a, 9, b., by)l 2 
, (6)

(21I-)kJ, 1.12k (ii) the scale-angle representation: for fixed b, the

CWT is considered as a function of scale and
In practice, we will choose ca = 1. angle (a, 9), i.e. of spatial frequency

The wavelet transform satisfies the following en-
ergy conservation property, E(a,) J d2 S(abb)2 • (7)

~~ k)'() - (5)
1IR2 d2 IIs(d)Ig =1/The position representation is the standard one,If' da do9S(a,b9, and it is useful for the generalpurposesofimagepro-

a- cessing: detection of position, shape and contours of

This leads to the interpretation of IS(a, 0, 6)l2 as an objects; pattern recognition; image filtering by resyn-
energy density of the signal s in position, scale, and thesis after elimination of unwanted features (for in-
orientation variables. There is a one-to-one map stance, noise). The scale-angle representation will be

between the frequency space k = (k., k.) and the particularly interesting whenever scaling behavior (as

scale-angle space (a, 9) by the identification Ik1 in fractals) or angular selection is important, in par-
a-1 and tan-1k = . hrticular when directional wavelets are used. In fact,1 an a () = 9 Therefore, IS(a, k,,b•)12 = both representations are needed for a full understand-

IS(a 1 , 9, 12 is a space-frequency energy density. In ing of the properties of the CWT in all four variables.
other words, the CWT may be interpreted as a phase
space representation of the signal. Position (or Range-Aspect) Energy Density

It is clear that a partial integration of the CWT
energy density over any subset of the variables gives The computation of E34 (b,, by) requires the calcula-
an energy density in the remaining variables. Thus, tion of S(aj, 9j, b, b.) for j = 1. .... ,N, that is, N
there are four 1D densities, six 2D densities, and four two-dimensional FFTs. But how do we choose the
3D densities. scale aj and the angle 9j? To answer this question

Among these, there are two basic densities: the po- one needs to define an appropriate sampling in the
sition (or range-aspect) density and, scale-angle den- scale-angle variables.
sity. In the following section, we discuss their imple- Suppose 0 is a directional wavelet, that is, the ef-
mentation, and the complexity of the related compu- fective support of its FT ¢ in spatial frequency space
tation. is contained in a convex cone of opening angle AW,



with apex at the origin. We then say that b is cen- For a Morlet wavelet of anisotropy e, this gives [5, 6]:
tered at k , if

k.f~o d~k k]( . (8) kP(fM) = o/- 1 '

Its width in the x and y directions are given by 2wx, ARP(OM) = 2 cot-' (kovc). (15)

2w,, where: Using the angular- and scale-resolving powers, one

S 1k -obtains a tiling of the frequency space by the wavelet

Taki ng- kon)z11p(k)12j (9) b, as indicated in figure 2.

(n = x,y) .i

Taking k,0 (0, k,) along the y axis (see figure 1), we

define the support of ¢ as the ellipse

S1. (10)

Taking intercepts with the ky-axis, we define the scale

resolving power of ¢ as 
--

SRP() -ko + w._y (1
ko - _y I -P V2PQ P

ky
Figure 2: Tiling of frequency space using the parameters
a and 0.

Suppose a signal s ranges in spatial frequency be-
P2 tween Pm and PM, and we want to analyze it with

a wavelet 0 with scale support [P1, P2]. The extreme
scales that are needed are, respectively, am = Pm/Pl
and aM = PM/P2, and the scale range will be:

aM - PM/Pm - APsignal (16)

am P2/P1 Apwavelet (

SPl Therefore, performing the discretization on a dyadic
scale, the signal s will be completely analyzed by the
family of wavelets ('filter bank') {Waj,e (Al)}, where

aj = P-2-2, j=0,1,...,P-1, (17)
Pi

Oj = AW.4, f--O,l,...,Q-l, (18)

k. with

Figure 1: Directional wavelet in the frequency domain. P = integer part of log 2  Apsigal (19)
( Apwavelet )

As for the angular resolving power ARP()) = AV, Q = integer part of 27r (20)

we consider the tangents to that ellipse and obtain

V -o2 Finally, the spatial energy density is

ARP(O) 2 cot 1  - (12) P-1 Q-1
wx E34(b- E E IS(aj,orb., by)12 (21)_2 cot-, k,_ , for ko >> wy. (13) j=0 1=0

Wx
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Eq.(26) reduces to

S(e',0, b) = (28)

J-d dudv?7(u - v, W - O)F(u, V;6j) .

In this way, we have reduced the problem of comput-
ing S(a, 9, bj) into that of computing a convolution.
The related complexity is N FFTs.

Conclusion

The calculation of the energy densities E 1 2 (a, 0) and
E 34 (6) uses a certain number N of 2D FFT. This
number N depends on the support of the wavelet
and signal in the space domain for E 12 (a, 0), and the
support of the wavelet and the signal in the spatial
frequency domain for the density E3 4 (b9).
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